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SUMMARY

This paper presents a detailed procedure to solve incompressible high Reynolds number turbulent flows
using large eddy simulations (LES) on distributed memory machines. The filtered Navier–Stokes equations
are discretized using a partial-staggered variable arrangement and solved using a finite difference grid.
A second-order central difference scheme and sixth-order compact scheme are employed for the spatial
derivatives. A third-order low storage Runge–Kutta method is used for the temporal derivatives. Validation
of the numerical scheme is performed first by simulating a driven cavity flow and flow over a backward-
facing step. The dynamic Smagorinsky subgrid turbulence model is then validated for flow in a channel.
Simulations are validated with relevant data available in literature. Since LES is computationally expensive,
the solver is parallelized using message passing interface. An efficient parallel linear equation solver is
utilized for solving the elliptical pressure Poisson equation. The parallel program is tested for solutions
of flow in a complex flow configuration and preliminary results are compared with experimental data.
Performance of the program for the same geometry is tested on a parallel cluster up to 256 processors. The
novel approach in this work is the use of a partial-staggered variable arrangement for LES of turbulent
flows, obviating the need for any form of artificial dissipation that might mask the subgrid effect on the
solution. Copyright q 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Numerical solutions to the incompressible Navier–Stokes equations have been documented since the
early 20th century [1]. Mathematically, the incompressible flow governing equations present unique
issues in the form of satisfying the incompressibility requirement. In an incompressible medium,
pressure information travels at infinite speed, which is the root cause of all problems. In literature,
two distinct approaches for satisfying this incompressibility constraint have been documented, and
the solution differences using various numerical methods stem from the choice of the method.
In ‘pressure-based’ methods, the incompressibility constraint is satisfied directly by decoupling
pressure from the momentum equations and then solving the pressure Poisson equation [2, 3].
Occasionally, instead of pressure and velocity, variables such as the vorticity-stream function have
been used. However, the use of the vorticity-stream function approach has been limited due to
increased computational costs for three-dimensional calculations. The second method is referred to
as a ‘density-based’ method and is coupled with the artificial compressibility formulation [4, 5]. The
methodology closely mimics the compressible flow formulation, where momentum and continuity
equations are coupled through density, and incompressibility is recovered in a limiting sense. In
the pressure-based method, most of the computational time is spent in solving the elliptic pressure
Poisson equation where a sparse matrix has to be inverted every time step. In the density-based
method, a time derivative of the pressure term is added to the continuity equation. The governing
equations are iterated in ‘pseudo-time’ until convergence is obtained, which is done for every
time step. Efficient algorithms (e.g. preconditioning techniques) are often employed to obtain
fast convergence. Both methods have been used by researchers and there is no evidence of the
superiority of one method over another. Over the years, the computational fluid dynamics (CFD)
community has seen improvements in numerical algorithms, in terms of both speed and accuracy,
and the ability to obtain solutions for complex geometries and systems, all due to tremendous
improvements in computing power. This is especially important for turbulent flow calculations
which encompass a wide range of length and time scales. High grid resolution and small time
steps lead to long calculation times and what takes weeks on a single computer can now be
completed in a matter of hours on a supercomputer.

The aim of the present work is to outline a methodology for numerical simulations of complex
turbulent flow problems. The novel approach in this work is the use of a partial-staggered variable
arrangement for large eddy simulations (LES) of turbulent flows, obviating the need for any
form of artificial dissipation (for stability) that might mask the subgrid effect on the solution.
A pressure-based scheme is used for solving the governing equations. The application of an in situ
turbulence generating methodology at the inflow boundary for LES is shown to work very well,
thus preventing the need for the otherwise expensive numerical simulations required to provide
suitable inflow conditions. The tools used in the description of the solution methodology have been
addressed in a consistent and logical fashion so that readers attempting to solve similar problems
can easily understand and adopt the methods used to suit their purpose. In the following sections,
the governing equations, numerical scheme and solution methodology are described in detail. A set
of validation studies are presented utilizing standard benchmark cases such as driven cavity flow,
flow over a backward-facing step and turbulent channel flow. Parallel computing using message
passing interface (MPI) is discussed and the parallel program is tested for simulations (using about
2× 106 cells) of a confined jet flow for which particle image velocimetry (PIV) measurements are
available. Performance of the parallel program is studied on an AMD Opteron cluster using up to
256 processors.
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2. GOVERNING EQUATIONS

The motion of a constant density fluid is governed by the incompressible Navier–Stokes equations.
Direct numerical simulations (DNS) is the only means of solving these equations exactly. However,
for complex flows, the present day computing facilities are not enough to obtain solutions in a
reasonable time. LES is a methodology where solutions are obtained on a coarse grid (compared
to DNS). Thus, the underlying philosophy of LES is to compute only the large-scale motions of
the flow and model the effect of the small-scale motions on the evolution of the large scales. In
order to separate the large scales from the small scales, a filtering operation is performed. Filtering
is represented mathematically in physical space as a convolution product. The resolved (filtered)
part denoted by �(xi ) is defined by the relation,

�(xi ) =
∫
D

�(�i )G(xi − �i ;�) d�i

where � is a generic variable and convolution kernel G is a filter function associated with the
cut-off scales in space �. The space vectors are represented by xi and �i , and D represents the
entire domain. The non-dimensional filtered set of equations are given by,

�ui
�xi

= 0 (1)

�ui
�t

+ �uiu j

�x j
= − �p

�xi
+ 1

Re

�
�x j

(
�ui
�x j

)
− ��i j

�x j
(2)

where the turbulent subgrid stress (SGS) tensor that requires modeling is

�i j = uiu j − uiu j (3)

and t represents time, ui is the filtered velocity field, p is the pressure and Re is the Reynolds
number.

3. NUMERICAL SOLUTION: FINITE DIFFERENCE METHODS

3.1. Variable arrangement

A key issue during discretization is to select points in the domain at which the values of the
unknown dependent primitive variables are to be computed. In literature, three such arrangements
are found, and will be discussed next. For each arrangement, the grid points are displaced by �x ,
�y and �z in the x , y and z directions, respectively.

3.1.1. Non-staggered arrangement. The non-staggered grid arrangement [4] defines both pressure
and velocities at the grid nodes (Figure 1). The non-staggered arrangement has advantages because
of its simplicity and the fact that velocity is defined on the boundary where it is generally
prescribed. This arrangement has significant advantages in complex geometries and situations
where unstructured grids are often used. However, the main disadvantage of a non-staggered grid
arrangement is that pressure is defined on the domain boundary. The resulting discretized system
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Figure 1. Non-staggered arrangement for a grid cell where velocities and pressure are defined at each
node. �x , �y and �z are the grid point displacements along x , y and z directions, respectively.
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Figure 2. Complete staggered arrangement where velocities are defined at the cell face centers and pressure
is defined at the cell volume center.

of equations for a node has no direct coupling between the pressure and velocities, resulting in
what is known as odd–even splitting. Non-staggered central difference schemes are known to suffer
because of pressure–velocity decoupling, which make the schemes unstable especially for high
Reynolds number turbulent flows [6]. To prevent spurious pressure fluctuations, a popular remedy
is to introduce ‘artificial diffusion’ which provides a stable solution [7]. This method requires the
specification of ad hoc constants that determine the amount of extra diffusion introduced.

3.1.2. Complete staggered arrangement. The staggered grid arrangement (Figure 2) introduced
by Harlow and Welch [3] offers advantages over the non-staggered arrangement. For a staggered
grid, velocities are defined at the cell faces, while pressure is defined at the cell center. The biggest
advantage of the staggered arrangement is the strong coupling between the velocities and pressure,
which alleviates convergence problems and oscillations in pressure and velocity fields [6]. On the
other hand, a disadvantage of this arrangement is that only one of the velocity components is
defined on each side of the domain boundary. Hence, it is necessary to employ ghost cells outside
the domain to enforce boundary conditions.
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Figure 3. Partial-staggered arrangement where velocities are defined at the grid nodes
and pressure is defined at the cell center.

3.1.3. Partial-staggered arrangement. A partial-staggered arrangement [8] defines velocities at
the grid nodes (Figure 3) similar to the non-staggered arrangement while pressure is staggered
to the cell center. The arrangement has the advantage that pressure is staggered with respect to
velocity and the pressure–velocity decoupling is avoided (as in the completely staggered case).
Moreover, the domain passes through all the velocity points and hence no ghost cells are required
outside the domain.

3.1.4. Selection of grid variable arrangement. Numerical simulations were performed using the
non-staggered and the partial-staggered arrangements to compare the stability of the two config-
urations. The divergence of the velocity field (∇ · u) gives an indication if the incompressibility
constraint is satisfied by a particular numerical scheme and this criterion was used to compare the
two arrangements. Two-dimensional Poiseuille flow (200× 48 cells) and three-dimensional duct
flow simulations (200× 48× 48 cells), for which analytical solutions exist, were performed. The
order of ∇ ·u on the non-staggered grid was 10−4, whereas on the partial-staggered grid a value of
10−5 was obtained. Thus for a simple laminar flow, an order difference in magnitude was observed
for the divergence of the velocity field. Moreover, the simulation on the non-staggered grid led to
an instability in the solution due to the decoupled nature of the variable arrangement. The cause
of decoupling is illustrated next [7].

On the non-staggered grid, the pressure gradient using a second-order central difference formu-
lation has the form,

�pnm
�x

= pnm+1 − pnm−1

2�x

where m represents the grid index and n is the time level. The Laplacian operator can be written
as,

�
�x

�pnm
�x

= �
�x

(
pnm+1 − pnm−1

2�x

)

= �pnm+1/�x − �pnm−1/�x
2�x
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Figure 4. Index notation for the variables on a partial-staggered grid.

= (pnm+2 − pnm)/2�x − (pnm − pnm−2)/2�x

2�x

= pnm+2 − 2pnm + pnm−2

(2�x)2
(4)

However, directly discretizing the Laplacian of pressure using a second-order central difference
scheme has the form,

�2 pnm
�x2

= pnm+1 − 2pnm + pnm−1

(�x)2
(5)

which is not consistent with Equation (4). If Equation (4) is used to represent the Laplacian of
pressure, the formulation leads to pressure–velocity decoupling. The splitting is caused by the fact
that the numerator of Equation (4) requires discrete pressure values at locations relative to pm
separated by 2�x , causing the pressure solution to oscillate. In contrast, Equation (5) only uses
adjacent pressure values at �x . To prevent odd–even splitting, some form of dissipation is added,
e.g. [7],

�
�x

�pnm
�x

= pnm+2 − 2pnm + pnm−2

(2�x)2
− �

4
(�x)2

�4 pnm
�x4

where � is a constant whose value lies between 0 and 1. A value of 0 gives the discretized Equation
(4), whereas a value of 1 gives back the form shown in Equation (5). The present study is intended
for LES; therefore, artificially introducing numerical dissipation must be avoided. Thus, a partial-
staggered grid is adopted in this study, and a detailed description of the arrangement is presented
next.

A two-dimensional schematic is shown in Figure 4 representing index notation on a partial-
staggered grid. The velocities are represented by filled circles and pressure by hollow circles. The
subscripts for pressure indicate that they are displaced 1

2�x from the velocity nodes. Unlike the
non-staggered approach, the divergence and gradient operators on u and p, respectively, for the
partial-staggered scheme are defined differently. The divergence operator is defined at the cell
center (m + 1/2), while the gradient operator is defined at the cell face (m). The discrete forms
of the divergence of velocity and the pressure gradient are shown for time level n,

�un

�x

∣∣∣∣
m+1/2

= unm+1 − unm
2(�x/2)

(6)
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�pn

�x

∣∣∣∣
m

= pnm+1/2 − pnm−1/2

2(�x/2)
(7)

The Laplacian of pressure at m + 1/2 can then be expanded as follows:

�
�x

�pn

�x

∣∣∣∣
m+1/2

= �pn/�x |m+1 − �pn/�x |m
(2�x/2)

= (pnm+3/2 − pnm+1/2)/(2�x/2) − (pnm+1/2 − pnm−1/2)/(2�x/2)

(2�x/2)

= pnm+3/2 − 2pnm+1/2 + pnm−1/2

(�x)2
(8)

This discretization of the Laplacian of pressure (Equation (8)) is consistent with that of the
discrete pressure gradient (Equation (7)) and divergence operator (Equation (6)) and thus eliminates
the odd–even splitting of pressure solution. On the partial-staggered grid, the pressure gradients
obtained on the cell faces have to be interpolated back on to the grid points, leading to an added
computational effort. First-order interpolations are used for the purpose.

3.2. Spatial and temporal discretizations

LES models are dissipative in nature, hence, it is important to use non-dissipative discretization
schemes. For the spatial discretizations shown in this section, only one direction will be shown
for simplicity (subscript represents grid index m).

3.2.1. Second-order central difference scheme. The first- and second-order derivatives for a general
function f (x) are, respectively,

� fm
�x

= f ′
m = fm+1 − fm−1

2�x

�2 fm
�x2

= f ′′
m = fm+1 − 2 fm + fm−1

(�x)2

At the boundaries, one-sided approximations are used with second-order accuracy. For example at
a left boundary,

f ′
m = −3 fm + 4 fm+1 − fm+2

2�x

f ′′
m = 2 fm − 5 fm+1 + 4 fm+2 − fm+3

(�x)2

3.2.2. Sixth-order compact scheme. A higher-order scheme can resolve a larger range of wave
numbers as compared to a second-order scheme on the same grid. In other words, a higher-order
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scheme requires fewer grid points to resolve the same scales. A sixth-order low dispersive scheme
proposed by Lele [9] is used here. The approximation for a first-order derivative is

f ′
m + �( f ′

m+1 + f ′
m−1) = a

2�x
( fm+1 − fm−1) + b

4�x
( fm+2 − fm−2)

with the constraint a + 24b= 5!
4! (2�) and � = 1

3 , a = 1
3 (4 + 2�), b= 1

3 (4� − 1). The formulation
is sixth-order accurate at the internal nodes. At the boundaries, however, the accuracy is reduced,
where

f ′
m + � f ′

m+1 = 1

�x
(a fm + b fm+1 + c fm+2)

with � = 2, a =− 5
2 , b= 2 and c= 1

2 . The scheme is third-order accurate at the boundary and
fourth-order accurate at points adjacent to the boundary.

The approximation of a second-order derivative is

f ′′
m + �( f ′′

m+1 + f ′′
m−1) = a

(�x)2
( fm+1 − 2 fm + fm−1) + b

4(�x)2
( fm+2 − 2 fm + fm−2)

with the constraint a+24b= 6!
4!� and � = 2

11 , a = 4
3 (1−�), b= 1

3 (10�−1) for sixth-order accuracy.
At boundaries,

f ′′
m + � f ′′

m+1 = 1

(�x)2
(a fm + b fm+1 + c fm+2 + d fm+3)

with � = 11, a = 13, b=−27 and c= 15 and d =−1. These schemes are computationally expensive
and a tridiagonal matrix is inverted to calculate the derivatives using the efficient Thomas algorithm.

3.2.3. Time integration. A compact third-order Runge–Kutta method is used to march the solution
in time [10]. The compact scheme requires minimum computational storage during a simulation.
For an equation dx/dt = f (x, t), the four stages are,

x∗ = xn + 1
4 f (x

n, tn)�nt

x∗∗ = xn + 8
15 f (x

n, tn)�nt

x∗∗∗ = x∗ + 5
12 f (x

∗∗, t∗∗)�nt

xn+1 = x∗ + 3
4 f (x

∗∗∗, t∗∗∗)�nt

with

t∗ = tn + 1
4�

n
t

t∗∗ = tn + 8
15�

n
t

t∗∗∗ = tn + 2
3�

n
t

tn+1 = tn + �nt
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3.3. Numerical solution and the pressure Poisson equation

Beginning with the initial conditions, an elliptic pressure Poisson equation is obtained by decoupling
pressure from the momentum equations [3]. Equation (2) can be rewritten as

�ui
�t

= − �p
�xi

+ Fi

where Fi represents the filtered convective, viscous and LES model terms. Discretizing the time
term (one step of the Runge–Kutta scheme),

un+1
i − uni

�t
=−�pn

�xi
+ Fn

i (9)

where n and n + 1 are the current and next time levels, respectively, and �t is the time step. The
continuity condition is enforced at n + 1, whereby,

�un+1
i

�xi
= 0 (10)

and maintains incompressibility at the next time step. Taking the divergence of Equation (9) and
using Equation (10), the pressure Poisson equation is obtained,

�
�xi

�pn

�xi
= �

�xi

[
uni
�t

+ Fn
i

]
(11)

Once pressure is known, the velocity field at n+1 can be computed from Equation (9). Note that this
formulation follows that of Harlow and Welch [3] and obviates the need for intermediate boundary
conditions necessary in the fractional-step method [11]. The pressure solution is obtained using an
iterative solver and is discussed later in the paper. Since explicit methods are used to discretize the
equations, time-step restrictions based on the CFL (convective scale) and von Neumann (diffusive
scale) criteria must be followed.

3.4. Comments on filter commutation

Near boundaries, a non-uniform mesh is used in order to reduce grid resolution requirements.
A mapping function based on a Jacobian transformation is then used to obtain the spatial derivatives
on the non-uniform mesh. It is known that on a non-uniform grid, the filter operation does not
commute, i.e. �u/�x �= �u/�x and the error can be quantified as [12],

�u
�x

= �u
�x

− ��
2

(
�

′

�

)
�2u
�x2

+ O(�)4

where � = ∫
�2G(�) d�. The pressure Poisson discretization is second order, irrespective of the

scheme used for convection and diffusion terms, and hence the overall accuracy of the filtered
Navier–Stokes solution is second order. Therefore, the commutation error is on the same order as
the finite difference error and is ignored.
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3.5. General boundary conditions

The velocity points are defined on the domain boundary, hence no-slip conditions can be directly
enforced. For an inflow boundary, a known velocity field can be prescribed. For an outflow
boundary, a convective outflow boundary condition is used [13],

�u
�t

+ U
�u
�n

= 0

where U is a constant velocity calculated from the inflow, so as to conserve the mass flow rate.
For the pressure Poisson equation, at the inflow boundary and along the no-slip walls, a zero
normal pressure gradient is specified, �p/�n = 0, and at the outflow boundary zero gage pressure
is specified.

4. VERIFICATION AND VALIDATION

To ascertain the accuracy of the numerical scheme as well as the LES model, benchmark cases are
simulated for laminar and turbulent flows using the partial-staggered grid. Solutions for lid driven
cavity flow and flow over a backward-facing step ensure that the scheme is correctly implemented.
No subgrid model was used for these two cases. For testing the LES model, a turbulent channel
flow simulation is performed.

4.1. Lid-driven square cavity flow

A square cavity flow driven by a moving lid has been studied extensively in CFD research and is
often used as a benchmark problem to validate solution algorithms. A two-dimensional schematic
is shown in Figure 5. The geometry consists of four planes that form a square cavity and the
top plane moves at a constant velocity U . Momentum is transferred by viscous forces and the
flow develops downward forming a primary recirculation zone. With increasing Reynolds num-
ber (defined as Re=LU/�, where L is the height of the cavity), a secondary recirculation zone
appears near the bottom corners of the cavity. Here the results are compared with those obtained by

U

y

x L

L

Figure 5. Two-dimensional schematic of a lid-driven square cavity flow.
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Figure 6. Profiles for the (a) u-velocity along the vertical centerline and (b) v-velocity along the horizontal
centerline. Lines represent present work and symbols are results by Ghia et al. [14].
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Figure 7. Two-dimensional solution of spanwise vorticity for driven cavity flow on a
square domain with 96× 96 cells at Re= 5000.

Ghia et al. [14] and Kim and Moin [11] at a Reynolds number of 5000. Ghia et al. used the vorticity-
stream function approach to solve the Navier–Stokes equations using an implicit multigrid method
on a mesh of size 256× 256 cells. Kim et al. used a fractional time-stepping scheme in conjunction
with an approximate factorization technique to solve the problem on a grid of size 96× 96 cells.
The grid size used in this work is also 96× 96 cells. Figure 6 shows u- and v-velocity profiles
along the vertical and horizontal centerlines of the cavity, respectively. The current simulations
deviate from that of Ghia et al. only near the cavity walls and this is due to a lower resolution
of the present simulation. The non-dimensional vorticity at the center of the primary vortex is
−1.821 (refer to Figure 7) and is in close agreement with the values obtained by Ghia et al. with
−1.860 and Kim and Moin with −1.812.

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 56:1819–1843
DOI: 10.1002/fld



1830 A. GOKARN ET AL.
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Figure 8. Velocity vectors in a (y–z) plane through the geometric center of the cubic cavity (x = 0.5) for
three-dimensional-driven cavity flow at Re= 1500 to elucidate the Taylor–Görtler vortex structures.

Extensions of two-dimensional-driven cavity flows were conducted to study Taylor–Görtler
vortex structures that are found in three-dimensional cavity flow experiments by Koseff et al.
[15]. Koseff et al., however, failed to reproduce this three-dimensional structure in their numerical
simulations. Kim and Moin [11] were able to capture the longitudinal Taylor–Görtler vortex
structures in their simulations (for Reynolds numbers greater than 900) and benchmarked their
numerical scheme with this case. To check whether the partial-staggered scheme is able to capture
these vortex structures, a three-dimensional-driven cavity simulation was performed on a coarse
grid (32× 32× 32 cells) for a Reynolds number of 1500. To initialize the calculation, small random
disturbances in the spanwise direction (z) were added. Periodic boundary conditions were used
in the spanwise direction. Velocity vectors in a y–z plane through the geometric center (x = 0.5)
of the cubic cavity are shown in Figure 8 for the present simulations. Although no quantitative
measurements were reported in their paper, vortex structures similar to those reported by Kim and
Moin are observed in the present simulations.

4.2. Flow over a backward-facing step

The flow over a backward-facing step in a channel is a good test case for the numerical method
because a dissipative scheme will not predict the correct reattachment length of the recirculation
zone downstream of the step. A two-dimensional schematic of the backward-facing step of height
h is shown in Figure 9. The flow expands downstream of the step and reattaches at xr forming
a recirculation zone. A two-dimensional simulation of laminar flow is performed for a Reynolds
number of 400. At the inflow boundary, located above the step, a parabolic velocity profile is
prescribed. The downstream boundary was located at x = 30h and 256× 32 cells were used for
the simulation. Figure 10 shows velocity vectors in the domain, colored by streamwise velocity
contours. Streamlines are also shown and the reattachment length xr/h = 8.7. Kim and Moin [11]
report a reattachment length of 8.6 in their simulations, while experimental results at Re= 400
show a reattachment length of 8.4 [16].
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Figure 9. Flow over a backward facing step with expansion ratio d/h = 2.
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Figure 10. Velocity vectors superimposed with u-velocity contours and streamlines at Re= 400.

4.3. Turbulent channel flow

The driven cavity flow and flow over a backward-facing step proved the correctness of the finite
difference scheme and the numerical solution procedure. To test the efficacy of the LES subgrid
model on turbulent flow solutions, simulations of flow in a turbulent channel were performed.
The turbulent channel flow problem is a standard benchmark case to test turbulence models. Here,
the dynamic Smagorinsky model [17–19] is tested for the partial-staggered formulation and is
described next.

The Smagorinsky model is an eddy-viscosity-type model, which represents the effect of the
subgrid scales purely as an enhanced diffusivity for the large-scale flow [17]. The SGS stress
tensor (Equation (3)) is modeled as,

�i j − 1
3�kk�i j = −2�t Si j

where �t is the turbulent eddy-viscosity, �i j is the Kronecker delta function, and the filtered strain
rate tensor is

Si j = 1

2

(
�ui
�x j

+ �u j

�xi

)
The turbulent eddy-viscosity is defined by

�t = (Cs�)2|S|
where,

|S| =
√
2Si j Si j
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and Cs is the Smagorinsky coefficient to be specified. The effective filter width � is a function of
the grid resolution and is defined as �= (�1�2�3)

1/3, where �1, �2 and �3 represent the filter
widths in x , y and z directions, respectively. In the dynamic model [18], the coefficient Cs is
calculated ‘dynamically’ using information from two different length scales that are already part
of the resolved solution. The procedure is generic and can be applied to any model. The coefficient
Cs is a function of space and time and has been shown to be compatible with the local flow physics.
Also, with the dynamic model, the eddy-viscosity asymptotically approaches zero near solid walls
where viscous effects dominate and in regimes where the flow is laminar. The dynamic procedure
requires a new filtering operation to be performed over a test-filter volume, with the test filter

width �̂ greater than the grid filter width �. An overbar, ‘−’ denotes grid filtering (subgrid scales)
and a caret, ‘̂ ’ denotes test filtering (sub-test scales). For the test-filter operation, a Gaussian filter
is used, represented by,

G(xi − �i ) =
[√

6/	

�

]3
exp

⎛⎝−
[√

6

�

]2
(xi − �i )

2

⎞⎠
On application of the test filter to the Navier–Stokes equations (Equation (2)), the sub-test scale
stress tensor, Ti j , is obtained as,

Ti j = ûi u j − ûi û j

The quantities �i j and Ti j are related by the following identity given by Germano et al. [18],
Li j = Ti j − �̂i j = ûi u j − ûi û j

where Li j is the resolved turbulent stress that can be explicitly calculated. The term Ti j is also
modeled similar to the subgrid scale turbulent stress �i j using the Smagorinsky model with the
same model constant Cs,

�i j − 1
3�kk�i j = −2C2

s �
2|S|Si j

Ti j − 1
3Tkk�i j = −2C2

s �̂
2 |̂S |̂Si j

Li j − 1
3Łkk�i j =C2

s Mi j

where

Mi j = 2�
2

(
̂|S|Si j − �̂

2

�
2
|̂S |̂Si j

)

Using a least-squares approach [19], the coefficient C2
s is evaluated as

C2
s = 〈Li j Mi j 〉

〈Mi j Mi j 〉
where angled brackets denote averaging in the homogeneous directions.

The flow geometry is shown in Figure 11. The channel is bounded only in the normal (y)
direction and extends to infinity in x and z. The streamwise (x) and spanwise (z) directions are
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Figure 11. Schematic of turbulent channel flow. Walls at the top and bottom
extend to infinity in the x and z directions.

homogeneous with periodic boundary conditions and the normal direction is bounded by no-slip
walls. For the initial condition, analytical expressions for the three velocity components are used
for Re� = 180 (based on wall stress �w) [20],

u(x, y, z) =C(1 − y8) + �2	 sin(	y) cos(x) sin(z)

v(x, y, z) = −�(1 + cos(	y)) sin(x) sin(z)

w(x, y, z) = −�	 sin(x) sin(	y) cos(z)

where C = 7.764Re1/7� is the center line velocity and � = 0.1C . This initial condition satisfies
boundary conditions and is divergence free. Essentially, it represents a three-dimensional distur-
bance superimposed on a two-dimensional mean flow. In addition, a mean streamwise pressure
gradient term is added to the streamwise momentum equation (F�i1). This is required to maintain
the mass flow rate in the system to its initial value. The streamwise pressure gradient is adjusted
at each time step [21] to provide the desired mass flow rate as,

Fn+1 = Fn − 1

�t

[(
ṁ

Ac

)0

− 2

(
ṁ

Ac

)n

+
(
ṁ

Ac

)n−1
]

where ṁ0 is the initial mass flow rate, and ṁn is the average mass flow rate at time level n, �t is
the physical time step, and Ac is the cross-flow area of the channel. The average mass flow rate
is given by

ṁ

Ac
= 1

LyLz

∫ 1

−1
〈
u〉x,z dy

where 〈〉x,z denotes an ensemble average in the x and z directions. The desired mass flow rate is
(ṁ/Ac)

0 for accurate conservation of mass.
The non-dimensional channel dimensions (with respect to channel half-width) are 4	 × 2× 2	.

Uniform grid cells are used in x and z, while stretched grid cells are used in the y-direction [22].
The domain is divided into 96× 64× 80 cells in x , y and z directions, respectively. For the subgrid
model, the dynamic Smagorinsky model is used with a test filter to grid filter ratio of 2.0 (refer
to [19] for details).
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Figure 12. Mean streamwise velocity profile in wall coordinates. DNS by Kim et al. [23] and
experiments by Niederschulte et al. [24].
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Figure 13. Root-mean-square of velocity fluctuations normalized by wall friction velocity. DNS by Kim
et al. [23] and experiments by Niederschulte et al. [24].

The velocity statistics are compared with the DNS results of Kim et al. [23] and the experi-
mental results of Niederschulte et al. [24]. The DNS study employed about 4× 106 grid points
(192× 129× 160 in x , y, z) and used pseudospectral methods. The experiments of Niederschulte
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Figure 14. Normalized Reynolds shear stress. DNS by Kim et al. [23] and
experiments by Niederschulte et al. [24].

were performed specifically to examine the accuracy of Kim et al.’s DNS results. Good, but not
exact agreement was found between the experimental and DNS results. The mean streamwise
profile is shown in wall coordinates in Figure 12. The mean profile was obtained by averaging
in the homogeneous directions (x and z) and in time. The velocity is normalized by the friction
velocity as u+ = u/u�, where u� =√

�w/
. The dashed line and the dash-dotted line represent
the law of the wall and the log law, respectively. The LES agree well with the DNS and exper-
imental data. A value of u� of 0.98 was obtained in the LES calculations making the effective
Re� = 176.4. The normalized rms velocity fluctuations are shown in Figure 13. The rms velocities
are underpredicted, and this is not completely unexpected, since, the LES data represent resolved
scale intensities in which the small-scale contribution in not included. The Reynolds shear stress
is shown in Figure 14 and compares well with the data. In general, the LES and DNS data match
well, thus providing confidence in the application of the model to other general flows.

5. PARALLEL COMPUTING

As the dimensionality of system and complexity of the problem increase, the need for obtaining
quick solutions becomes a priority. Computing time becomes a bottleneck for simulations of
turbulent flows that require high grid resolutions. In the present case, the computation of pressure
is an expensive part of the numerical solution procedure since pressure in the entire domain has to
be solved simultaneously due to the nature of the elliptic Poisson equation. The incompressibility
condition must be satisfied at every time step, i.e. each stage of the Runge–Kutta time integration
scheme, hence, the Poisson equation is solved four times in each time step. These factors lead to
the necessity of parallel computing.
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Figure 15. Partitioning of a finite difference grid for parallel computing.

MPI is a programming standard used on parallel computers with distributed memory [25]. The
main idea is to use domain decomposition to break up the geometry into parts such that every
processor gets its own share of calculations. A schematic of a simple two-dimensional domain is
shown in Figure 15. The geometry is divided such that two processors share the computational
domain, each having 16 grid points for its own calculations (small filled circles for processor 0
and small unfilled circles for processor 1). The interprocessor boundary is shown in the figure
with a double line. Two layers of grid points (represented by large circles concentric to the small
circles) adjacent to the interprocessor boundary represent the points over which communication is
required. The MPI library provides routines for communication between processors.

Solutions to the first- and second-order derivatives for the sixth-order compact finite difference
scheme are obtained by solving the Thomas algorithm. It is a direct method and the solution
is obtained in two steps, forward elimination and backward substitution. Due to the substitution
procedures of the algorithm, it is not scalable on a parallel machine. However, since many such
forward and backward steps are required along a particular direction (e.g. x-direction) during a
calculation, an overlap can be achieved in each stage to reduce the overall computational time.
This technique is known as pipelining. Details about the procedure can be found in Stoessel
et al. [26]. For the second-order central difference schemes, only one layer of cells is required for
communication.

To solve the linear system of equations for the Poisson equation on a three-dimensional domain,
a hepta-diagonal sparse matrix must be inverted. For this purpose, an efficient parallel program,
Aztec, developed at the Sandia National Laboratory is coupled with the finite difference solver [27].
Aztec is an iterative library for solving a system of linear equations, and is designed especially for
distributed memory parallel machines and it also offers a variety of preconditioned Krylov solvers.
The bi-conjugate gradient method with stabilization and least-squares preconditioning is used for
the present calculations. Aztec is coupled with the LES solver such that solutions can be obtained
on multiple processors. The input/output (I/O) is performed individually by each processor.

5.1. Simulations of high Reynolds number flows

The parallel solver developed in the preceding sections is utilized for simulations of a confined
planar jet. The schematic of the geometry is shown in Figure 16. There are three inlet streams at the
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Figure 16. Schematic of a confined planar jet.

Figure 17. Inflow statistics comparing mean and rms velocities in the streamwise and cross-stream
directions at x = 0 cm for experiments [29] and LES.

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 56:1819–1843
DOI: 10.1002/fld



1838 A. GOKARN ET AL.

Figure 18. Inflow statistics comparing measured and LES resolved shear stress
at x = 0 cm for experiments [29] and LES.

inflow boundary, each separated by splitter plates. The channel dimensions are 0.3× 0.06× 0.1m3

(x , y, z, respectively). The volumetric flow rates in the outer streams are 0.4 L/s and in the inner
stream is 0.8 L/s. The Reynolds number based on average velocity and hydraulic diameter is
20 000. The flow is bounded by no-slip walls in y- and z, directions. The simulation utilized about
2× 106 cells (224× 96× 96 cells in x , y and z, respectively). Non-uniform cells were used with
clustering in the shear layers and near walls. The simulations were performed on the Opteron
cluster using 32 processors (8 nodes). Data for statistics were collected after three residence times
so as to flush out the initial condition. Nearly 6000 realizations in time were used to compute the
LES statistics. The entire simulation took about 3000 CPU (central processing unit) hours on the
cluster with a CFL of 0.2.

The LES are compared with experimental data, hence, inflow conditions that are similar to
those in the experiments are required for the simulation. For this purpose, the inflow conditioning
technique of Klein et al. [28] is used. The method generates inflow velocity signals that have
statistical properties similar to those in the experiments. The inflow velocities are given by

ui = 〈ui 〉 + ai jU j

where 〈ui 〉 is the mean inflow velocity from experiments, Ui is a provisional signal with a
prescribed two-point statistic (from experiments), and

(ai j ) =

⎛⎜⎜⎝
(R11)

1/2 0 0

R21/a11 (R22 − a221)
1/2 0

R31/a11 (R32 − a21a31)/a22 (R33 − a231 − a232)
1/2

⎞⎟⎟⎠
where Ri j is the correlation tensor known from experiments. The advantage of this method is
that inflow conditions are obtained as the simulation progresses, unlike methods where prior
computations are required specifically to generate and store inflow velocities. Also, the method
works even though the velocity field in the inlet plane is not divergence free.
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Figure 19. Comparison of mean and rms velocities in the streamwise and cross-stream directions at
x = 7 cm for experiments [29] and LES.

PIV measurements were made for the same configurations in the x–y plane at z = 0.05m. The
comparison of LES and PIV data is made at two locations. The first measurement station is located
0.1 cm downstream of the splitter plate tip (due to difficulty in measurements upstream) and the
PIV data at this location are used as inflow condition for the LES. This location are referred to as
x = 0 and all locations downstream are relative to this initial position. Figures 17 and 18 compare
the first- and second-order one-point statistics at x = 0 cm. PIV data are represented by circles
and LES by lines. The inflow turbulence generator is able to reproduce velocity fields that very
closely represent the PIV statistics. Statistics are also compared at one more downstream location
(x = 7 cm) in Figures 19 and 20. The mean profile compares well with experiments but there is a
slight underprediction near the upper and lower walls which is attributed to insufficient resolution.
This is also noticeable in the v-rms profile. In the shear layers, good agreement is obtained between
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Figure 20. Comparison of resolved shear stress at x = 7 cm for experiments [29] and LES.

Figure 21. Performance on AMD Opteron cluster from 4 to 64 processors.

experimental data and LES. Further tests are required to determine the optimum grid size for the
LES in future studies.

5.2. Parallel performance

The parallel solver is tested on an AMD Opteron cluster which has 376 processor cores (94
nodes) with 8GB of memory per node. Each node is a dual processor, dual core 2.4GHz AMD
280 Opteron with 1MB on-chip cache. The nodes are interconnected with a high-performance
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Figure 22. Performance on AMD Opteron cluster from 64 to 256 processors.

InfiniPath HTX communication network for MPI communication and a Gigabit Ethernet switch
for I/O. Each test utilized at least 1 h of CPU time. Due to time limitations per processor on the
cluster, the test was divided into two parts: one using 4–64 processors and another using 64–256
processors. Speed-up on n processors is generally defined as the ratio of time taken by a single
processor calculation to the time taken by the n-processor calculation. For the tests using 4–64
processors, speed-up is based on four processors as a reference, and tests using 64–256 processors
use a reference of 64 processors. Figures 21 and 22 show the performance curves, where symbols
represent the simulations while the solid line represents the ideal case. Overall, the solver performed
well on multiple processors, and a few cases show better than ideal or super-linear speed-up, which
is attributed to an efficient cache utilization for those calculations.

6. SUMMARY

In this paper, an incompressible flow solver for turbulent flow simulations using large eddy
simulations was described. A partial-staggered pressure grid was used to prevent oscillations
in the solution while conserving mass flow rate. The solver was tested for simple laminar and
turbulent flows for validation of the numerical scheme and subgrid model. MPI was utilized to
reduce time and memory requirements. The sixth-order scheme was based on the pipelining method
of calculation and the pressure solution was obtained using an efficient parallel iterative method. A
wall-bounded, two-shear layer flow was simulated using two million cells and preliminary results
were compared with PIV data obtained for the same geometry. LES compared well with data and
solutions were obtained in a reasonable amount of time. Performance tests showed good speed-up
on an Opteron cluster, highlighting the importance of parallel computing in LES.
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